skip to main content


Search for: All records

Creators/Authors contains: "Bagchi, Kushal"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Glasses prepared by physical vapor deposition (PVD) are anisotropic, and the average molecular orientation can be varied significantly by controlling the deposition conditions. While previous work has characterized the average structure of thick PVD glasses, most experiments are not sensitive to the structure near an underlying substrate or interface. Given the profound influence of the substrate on the growth of crystalline or liquid crystalline materials, an underlying substrate might be expected to substantially alter the structure of a PVD glass, and this near-interface structure is important for the function of organic electronic devices prepared by PVD, such as organic light-emitting diodes. To study molecular packing near buried organic–organic interfaces, we prepare superlattice structures (stacks of 5- or 10-nm layers) of organic semiconductors, Alq3 (Tris-(8-hydroxyquinoline)aluminum) and DSA-Ph (1,4-di-[4-(N,N-diphenyl)amino]styrylbenzene), using PVD. Superlattice structures significantly increase the fraction of the films near buried interfaces, thereby allowing for quantitative characterization of interfacial packing. Remarkably, both X-ray scattering and spectroscopic ellipsometry indicate that the substrate exerts a negligible influence on PVD glass structure. Thus, the surface equilibration mechanism previously advanced for thick films can successfully describe PVD glass structure even within the first monolayer of deposition on an organic substrate.

     
    more » « less
  2. We study the structure of vapor-deposited glasses of five common organic semiconductors as a function of substrate temperature during deposition, using synchrotron X-ray scattering. For deposition at a substrate temperature of ∼0.8 T g (where T g is the glass transition temperature), we find a generic tendency towards “face-on” packing in glasses of anisotropic molecules. At higher substrate temperature however this generic behavior breaks down; glasses of rod-shaped molecules exhibit a more pronounced tendency for end-on packing. Our study provides guidelines to create face-on and end-on packing motifs in organic glasses, which can promote efficient charge transport in OLED and OFET devices respectively. 
    more » « less
  3. null (Ed.)
  4. Abstract

    Blue phases (BPs) are soft and stimuli‐responsive photonic crystals that are interesting for sensing, display, and lasing applications. Polycrystallinity has, however, limited both the study and applicability of BPs. Continuum simulations, which lack molecule‐specific details, predict that striped chemical patterns, consisting of alternating homeotropic and planar regions, can be used to nucleate single crystals of BPs. Here it is experimentally demonstrated that, independent of the chemistry and complexity of the BP forming material, chemical patterns direct the self‐assembly of BPs; these results indicate that a general, thermodynamics‐based continuum description of BP self‐assembly is adequate for a broad range of materials. When the pattern periodicity equals the BPII unit cell size, single crystals with (100) orientation form for all studied materials. Chemical patterns also promote the growth of BPI crystals with (110) orientation. Importantly, the self‐assembly of a photopolymerizable BP is directed and thermally stable, UV‐polymerized single crystals are prepared. The ability to create arbitrarily large, polymeric photonic single crystals with uniform lattice orientation, may have broad implications for optical applications.

     
    more » « less